History Matching and Uncertainty Characterization: Using Ensemble-based Methods - Alexandre Emerick - Libros - LAP LAMBERT Academic Publishing - 9783659107283 - 27 de abril de 2012
En caso de que portada y título no coincidan, el título será el correcto

History Matching and Uncertainty Characterization: Using Ensemble-based Methods

Precio
€ 65,49

Pedido desde almacén remoto

Entrega prevista 31 de dic. - 8 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

In the last decade, ensemble-based methods have been widely investigated and applied for data assimilation of flow problems associated with atmospheric physics and petroleum reservoir history matching. Among these methods, the ensemble Kalman filter (EnKF) is the most popular one for history-matching applications. The main advantages of EnKF are computational efficiency and easy implementation. Moreover, because EnKF generates multiple history-matched models, EnKF can provide a measure of the uncertainty in reservoir performance predictions. However, because of the inherent assumptions of linearity and Gaussianity and the use of limited ensemble sizes, EnKF does not always provide an acceptable history-match and does not provide an accurate characterization of uncertainty. In this work, we investigate the use of ensemble-based methods, with emphasis on the EnKF, and propose modifications that allow us to obtain a better history match and a more accurate characterization of the uncertainty in reservoir description and reservoir performance predictions.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 27 de abril de 2012
ISBN13 9783659107283
Editores LAP LAMBERT Academic Publishing
Páginas 264
Dimensiones 150 × 15 × 226 mm   ·   411 g
Lengua Alemán