Statistical Multiscaling in Dynamic Ecology: Probing the Long-term Vegetation Process for Patterns of Parameter Oscillation - László Orlóci Ph.d. - Libros - CreateSpace Independent Publishing Platf - 9781475071382 - 15 de marzo de 2012
En caso de que portada y título no coincidan, el título será el correcto

Statistical Multiscaling in Dynamic Ecology: Probing the Long-term Vegetation Process for Patterns of Parameter Oscillation

László Orlóci Ph.d.

Precio
€ 34,49

Pedido desde almacén remoto

Entrega prevista 17 - 26 de feb.
Añadir a tu lista de deseos de iMusic

Statistical Multiscaling in Dynamic Ecology: Probing the Long-term Vegetation Process for Patterns of Parameter Oscillation

The Book?s conceptualisation of multiscaling theory presents the Next Step in the study of the long-term vegetation process. The context is statistical and the process generating events have proxy in the compositional transitions of the palynological spectra. Familiarity with multiscaling is not a pre-requisite. The reader shall learn from the examples how multiscaling techniques helped to identify the self-similar (fractal) nature of the process, isolate low and high instability phases, locate hotspots of compositional transitions, and link these to delayed climatic effects. He or she shall also learn how to gauge process homeomorphy among sites, isolate the random and directed effects found braided into the process, and do much more within a broad yet formal probabilistic framework. The Book?s contents are taken in part from a graduate course offered in the Ecology program at UFRGS in Porto Alegre, Brazil. The examples use palynological spectra from sites on the Hungarian Great Plain and in the adjacent Carpathian Mountains. Application programs are available from the author.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 15 de marzo de 2012
ISBN13 9781475071382
Editores CreateSpace Independent Publishing Platf
Páginas 102
Dimensiones 150 × 5 × 225 mm   ·   149 g
Lengua English