A New Approach for Blind Source Separation of Convolutive Sources - Wavelet Based Separation Using Shrinkage Function - Ranjan Acharyya - Libros - VDM Verlag Dr. Mueller e.K. - 9783639077971 - 30 de septiembre de 2008
En caso de que portada y título no coincidan, el título será el correcto

A New Approach for Blind Source Separation of Convolutive Sources - Wavelet Based Separation Using Shrinkage Function

Precio
€ 50,99

Pedido desde almacén remoto

Entrega prevista 12 - 21 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

ICA and its variations are used extensively in BSS. Most of the algorithms that are used to separate speech or music signals utilize ICA in the time frequency domain. Here ICA is applied in the wavelet domain. Separation of signals is achieved by applying the ICA algorithm and shrinkage functions to the wavelet coefficients of the original mixtures. ICA alone can achieve reasonably good separation of artificially convolved sources; however, poor separation quality is experienced for real world convolutive mixtures. This work presents a novel post processing technique to deal with the cross talk problem. The post processor is applied to the signals separated by the ICA network. A super Gaussian form of the PDF is assumed for the dominant source components. Closed form solutions of the parameters of the PDF are obtained by the MOM. The PDF of the cross talk components is assumed to be of a GMM, and the EM method is applied to determine the parameters of the Gaussian mixtures. The algorithm is applied to a real world mixture of music and speech signals. The results show a significant reduction in the cross talk.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 30 de septiembre de 2008
ISBN13 9783639077971
Editores VDM Verlag Dr. Mueller e.K.
Páginas 84
Dimensiones 150 × 220 × 10 mm   ·   122 g
Lengua Inglés