Missing Data Problems in Machine Learning: Outline and Contributions - Robin Parker - Libros - VDM Verlag Dr. Müller - 9783639212280 - 7 de junio de 2010
En caso de que portada y título no coincidan, el título será el correcto

Missing Data Problems in Machine Learning: Outline and Contributions

Precio
€ 67,49

Pedido desde almacén remoto

Entrega prevista 16 - 27 de ene. de 2026
Añadir a tu lista de deseos de iMusic

Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 7 de junio de 2010
ISBN13 9783639212280
Editores VDM Verlag Dr. Müller
Páginas 168
Dimensiones 225 × 9 × 150 mm   ·   254 g
Lengua Inglés