Dr. Pei-gee Ho Dissertation: Multivariate Time Series Model Based Support Vector  Machine for Multiclass Remote Sensing Image  Classification and Region Segmentation - Pei-gee Ho - Libros - LAP Lambert Academic Publishing - 9783838303529 - 19 de junio de 2009
En caso de que portada y título no coincidan, el título será el correcto

Dr. Pei-gee Ho Dissertation: Multivariate Time Series Model Based Support Vector Machine for Multiclass Remote Sensing Image Classification and Region Segmentation

Precio
€ 49,99

Pedido desde almacén remoto

Entrega prevista 12 - 20 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

Satellite and airborne Remote Sensing for observing the earth surface, land monitoring and geographical information systems control are issues in world?s daily life. The source of information was primarily acquired by imaging sensors and spectroradiometer in remote sensing multi-spectral image stack format. The contextual information between pixels or pixel vectors is characterized by a time series model for image processing in the remote sensing. Due to the nature of remote sensing images such as SAR and TM which are mostly in multi-spectral image stack format, a 2-D Multivariate Vector AR (ARV) time series model with pixel vectors of multiple elements are formulated. To compute the time series ARV system parameter matrix and estimate the error covariance matrix efficiently, a new method based on modern numerical analysis is developed. As for pixel classification, the powerful Support Vector Machine (SVM) kernel based learning machine is applied. The 2-D multivariate time series model is particularly suitable to capture the rich contextual information in single and multiple images at the same time.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 19 de junio de 2009
ISBN13 9783838303529
Editores LAP Lambert Academic Publishing
Páginas 120
Dimensiones 225 × 7 × 150 mm   ·   203 g
Lengua Alemán  

Mas por Pei-gee Ho

Mostrar todo