Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models - Stefanos Giakoumatos - Libros - LAP LAMBERT Academic Publishing - 9783838386331 - 26 de agosto de 2010
En caso de que portada y título no coincidan, el título será el correcto

Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models

Precio
€ 65,49

Pedido desde almacén remoto

Entrega prevista 8 - 16 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

The phenomenon of changing variance and covariance is often encountered in financial time series. As a result, during the last years researchers focused on the time-varying volatility models. These models are able to describe the main characteristics of the financial data such as the volatility clustering. In addition, the development of the Markov Chain Monte Carlo Techniques (MCMC) provides a powerful tool for the estimation of the parameters of the time-varying volatility models, in the context of Bayesian analysis. In this thesis, we adopt the Bayesian inference and we propose easy-to-apply MCMC algorithms for a variety of time-varying volatility models. We use a recent development in the context of the MCMC techniques, the Auxiliary variable sampler. This technique enables us to construct MCMC algorithms, which only consist of Gibbs steps. We propose new MCMC algorithms for many univariate and multivariate models. Furthermore, we apply the proposed MCMC algorithms to real data and compare the above models based on their predictive distribution

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 26 de agosto de 2010
ISBN13 9783838386331
Editores LAP LAMBERT Academic Publishing
Páginas 240
Dimensiones 150 × 14 × 226 mm   ·   358 g
Lengua Inglés