Unity Root Matrix Theory: A Quark Flavour Model - Richard J. Miller - Libros - New Generation Publishing - 9781787192126 - 22 de diciembre de 2016
En caso de que portada y título no coincidan, el título será el correcto

Unity Root Matrix Theory: A Quark Flavour Model

Precio
€ 29,99

Pedido desde almacén remoto

Entrega prevista 14 - 23 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

This book presents an integer-based representation of the quark flavour model using the mathematics of Unity Root Matrix Theory (URMT). As per a conventional quark representation, the quarks are given by eigenvectors to matrix operators, with commutation relations amongst these operators being those of the symmetry groups SU(2), for an up and down quark isospin representation, and SU(3), for an additional strange quark. The URMT method of lifting then extends this to a full, six-quark model, SU(6).



Unlike conventional physical theory, the work originates in the world of number theory and Diophantine equations, and is based upon the invariance of an eigenvector equation to parametric variation in the unity root matrix - its elements are unity (or primitive) roots. The quark eigenvectors are Pythagorean or hyperbolic in nature, and parametrically evolve in both the time and frequency domain, whilst keeping all their inner product relations invariant, i.e. the model possesses unitary properties equivalent to the special unitary groups SU(2) to SU(6).



Following previous publications on recasting physics in the world of number-theory, URMT has shown, once again, that the physical world may well be reducible to a simpler scheme that dances to the tune of the integers.


460 pages

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 22 de diciembre de 2016
ISBN13 9781787192126
Editores New Generation Publishing
Páginas 460
Dimensiones 156 × 234 × 24 mm   ·   639 g
Lengua Inglés  

Mas por Richard J. Miller

Mostrar todo