Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences - Ovidiu Calin - Libros - Springer Nature Switzerland AG - 9783030367237 - 14 de febrero de 2021
En caso de que portada y título no coincidan, el título será el correcto

Deep Learning Architectures: A Mathematical Approach - Springer Series in the Data Sciences 1st ed. 2020 edition

Precio
€ 62,49

Pedido desde almacén remoto

Entrega prevista 31 de dic. - 5 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

También disponible como:

This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.

This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates.  In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

 

 



760 pages, 35 Illustrations, color; 172 Illustrations, black and white; XXX, 760 p. 207 illus., 35 i

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 14 de febrero de 2021
ISBN13 9783030367237
Editores Springer Nature Switzerland AG
Páginas 760
Dimensiones 176 × 254 × 48 mm   ·   1,45 kg
Lengua Alemán  

Mas por Ovidiu Calin

Mostrar todo