Non-linear Time Series Models: Parametric Estimation Using Estimating Functions - Jesse Mwangi - Libros - LAP LAMBERT Academic Publishing - 9783659302015 - 14 de noviembre de 2012
En caso de que portada y título no coincidan, el título será el correcto

Non-linear Time Series Models: Parametric Estimation Using Estimating Functions

Precio
€ 49,99

Pedido desde almacén remoto

Entrega prevista 13 - 21 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE, GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique. Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 14 de noviembre de 2012
ISBN13 9783659302015
Editores LAP LAMBERT Academic Publishing
Páginas 120
Dimensiones 150 × 7 × 225 mm   ·   197 g
Lengua Alemán