Hidden Markov Models with Applications in Computational Biology: Model Extensions and Advanced Analysis of Dna Microarray Data - Michael Seifert - Libros - Südwestdeutscher Verlag für Hochschulsch - 9783838136042 - 2 de enero de 2013
En caso de que portada y título no coincidan, el título será el correcto

Hidden Markov Models with Applications in Computational Biology: Model Extensions and Advanced Analysis of Dna Microarray Data

Precio
€ 66,49

Pedido desde almacén remoto

Entrega prevista 12 - 20 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

Standard first-order Hidden Markov Models (HMMs) are very popular tools for the analysis of sequential data in applied sciences. HMMs are versatile and structurally simple models enabling probabilistic modeling based on a sound theoretical grounding. In contrast to the broad usage of first-order HMMs, applications of higher-order HMMs are very rare, but they have been proven to be powerful extensions of first-order HMMs including applications in speech recognition, image segmentation or computational biology. This book provides the first easily accessible and comprehensive extension of the algorithmic basics of first-order HMMs to higher-order HMMs coupled with practical applications in computational biology. The book starts with a theoretical part developing the algorithmic basics of higher-order HMMs and two novel model extensions (i) parsimonious higher-order HMMs and (ii) HMMs with scaled transition matrices. The second part considers applications of these models to the analysis of different DNA microarray data sets followed by a detailed discussion. The book addresses readers having basic knowledge on first-order HMMs interested to gain more insights on higher-order HMMs.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 2 de enero de 2013
ISBN13 9783838136042
Editores Südwestdeutscher Verlag für Hochschulsch
Páginas 184
Dimensiones 150 × 11 × 226 mm   ·   292 g
Lengua Alemán  

Mas por Michael Seifert

Mostrar todo