Sparse Learning Under Regularization Framework: Theory and Applications - Michael R. Lyu - Libros - LAP LAMBERT Academic Publishing - 9783844330304 - 15 de abril de 2011
En caso de que portada y título no coincidan, el título será el correcto

Sparse Learning Under Regularization Framework: Theory and Applications

Precio
€ 49,99

Pedido desde almacén remoto

Entrega prevista 1 - 9 de ene. de 2026
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

Regularization is a dominant theme in machine learning and statistics due to its prominent ability in providing an intuitive and principled tool for learning from high-dimensional data. As large-scale learning applications become popular, developing efficient algorithms and parsimonious models become promising and necessary for these applications. Aiming at solving large-scale learning problems, this book tackles the key research problems ranging from feature selection to learning with mixed unlabeled data and learning data similarity representation. More specifically, we focus on the problems in three areas: online learning, semi-supervised learning, and multiple kernel learning. The proposed models can be applied in various applications, including marketing analysis, bioinformatics, pattern recognition, etc.

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 15 de abril de 2011
ISBN13 9783844330304
Editores LAP LAMBERT Academic Publishing
Páginas 152
Dimensiones 226 × 9 × 150 mm   ·   244 g
Lengua Alemán  

Mas por Michael R. Lyu

Mostrar todo