Degenerate Elliptic Equations - Mathematics and Its Applications - Serge Levendorskii - Libros - Springer - 9789048142828 - 15 de diciembre de 2010
En caso de que portada y título no coincidan, el título será el correcto

Degenerate Elliptic Equations - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 1993 edition

Serge Levendorskii

Precio
€ 118,49

Pedido desde almacén remoto

Entrega prevista 2 - 11 de dic.
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

Degenerate Elliptic Equations - Mathematics and Its Applications 1st Ed. Softcover of Orig. Ed. 1993 edition

0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,?) = L aa(x)?a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self - adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self - adjoint operator with discrete spectrum and for the distribu­ tion functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e))are the distribution functions of the matrix a2m(X,e) : C' -+ CU).


436 pages, biography

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 15 de diciembre de 2010
ISBN13 9789048142828
Editores Springer
Páginas 436
Dimensiones 210 × 297 × 23 mm   ·   612 g
Lengua English  

Mostrar todo

Mas por Serge Levendorskii