Practical Full Stack Machine Learning: A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions - Alok Kumar - Libros - Bpb Publications - 9789391030421 - 26 de noviembre de 2021
En caso de que portada y título no coincidan, el título será el correcto

Practical Full Stack Machine Learning: A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions

Alok Kumar

Precio
€ 44,99

Pedido desde almacén remoto

Entrega prevista 29 de nov. - 10 de dic.
Los regalos de Navidad se podrán canjear hasta el 31 de enero
Añadir a tu lista de deseos de iMusic

Practical Full Stack Machine Learning: A Guide to Build Reliable, Reusable, and Production-Ready Full Stack ML Solutions

Master the ML process, from pipeline development to model deployment in production.



KEY FEATURES

? Prime focus on feature-engineering, model-exploration & optimization, dataops, ML pipeline, and scaling ML API.

? A step-by-step approach to cover every data science task with utmost efficiency and highest performance.

? Access to advanced data engineering and ML tools like AirFlow, MLflow, and ensemble techniques.



WHAT YOU WILL LEARN

? Learn how to create reusable machine learning pipelines that are ready for production.

? Implement scalable solutions for pre-processing data tasks using DASK.

? Experiment with ensembling techniques like Bagging, Stacking, and Boosting methods.

? Learn how to use Airflow to automate your ETL tasks for data preparation.

? Learn MLflow for training, reprocessing, and deployment of models created with any library.

? Workaround cookiecutter, KerasTuner, DVC, fastAPI, and a lot more.




WHO THIS BOOK IS FOR

This book is geared toward data scientists who want to become more proficient in the entire process of developing ML applications from start to finish. Knowing the fundamentals of machine learning and Keras programming would be an essential requirement.



TABLE OF CONTENTS

1. Organizing Your Data Science Project

2. Preparing Your Data Structure

3. Building Your ML Architecture

4. Bye-Bye Scheduler, Welcome Airflow

5. Organizing Your Data Science Project Structure

6. Feature Store for ML

7. Serving ML as API


424 pages

Medios de comunicación Libros     Paperback Book   (Libro con tapa blanda y lomo encolado)
Publicado 26 de noviembre de 2021
ISBN13 9789391030421
Editores Bpb Publications
Páginas 424
Dimensiones 191 × 235 × 22 mm   ·   726 g
Lengua English  

Mostrar todo

Mas por Alok Kumar